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METHODSOF SEPARATIONOF VARIABLESIN TURBULENCETHEORY

by Shunichi Tsug4
Nielsen Engineering & Research, Inc.

SUMMARY

Two schemes of closing turbulent momentequations are proposed both
of which makedouble correlation equations separated into single-point
equations. The first is based on neglected triple correlations. Grid-
produced turbulence is described in this light as time-independent,
cylindrically-isotropic turbulence, showing the existence of two modes
in fluctuations, one obeying and the other disobeying Taylor's hypothesis,
respectively. Application to wall turbulence guided by a new asymptotic
method for the Orr-Sommerfeld equation suggests existence of a neutrally
stable mode of essentially three dimensional nature. The second closure
scheme is based on an assumption of identity of the separated variables
through which triple and quadruple correlations are formed. The result-
ing equation adds, to its equivalent of the first scheme, an integral of
nonlinear convolution describing a direct energy-cascading.



I. INTRODUCTION

A. Separability of Double Correlation Equations

The first sound basis on which equations governing double and
higher-order turbulent correlations are formulated is due to K_rm_n and
Howarth (ref. i). Amongother correlation or Reynolds' stress equations
constructed in various ways on the common basis of Navier-Stokes frame-

work this equation has an additional kinematical attribute that the

K_rm_n-Howarth formalism is consistent also with the BBGKY hierarchy

(ref. 2). In other words, it alone is concurrent with Liouville's

equation; a master equation of nonequilibrium statistical mechanics.

This fact has been revealed in reference 2 by starting with the two-point

BBGKY equation transformed into fluid-dynamic moment equations through

13-moment expansion, leading for incompressible turbulence to an equation

identified a posteriori with

/k

<Auj(NS)£ + &_£(NS)j> = 0 (i)

where we have defined the operator (NS)j by

{_ _ _] i _

Ur _x r _j 0 _xj(NS)j _ [_T + v uj +-

r

(2)

and an averaging procedure by the symbol < >. In these expressions

quantities without and with caret (A) denote those at space points x and

_, respectively, u and p are the fluctuating fluid-dynamic velocity and
3

pressure, respectively, and Au is the instantaneous velocity fluctuation
3

AU. : u. - u (3)
3 3 ]

namely, instantaneous deviation around the average velocity

u : <u > (4)
3 ]

Equation (I) gives us a 'recipe' of how to cook fluid-dynamic equa-

tions correctly for the correlation equation to be consistent with the

BBGKY formalism. It requires that the velocity fluctuation to be

multiplied on the Navier-Stokes operator is at a different space-point

and at the same time, so that it prohibits using the same space-points

x = x in Eq. (1) in contrast to what is often done in constructing model

equations. Because of the seven-dimensional structure in (x,_,t) space



this equation, known to fluid-dynamicists without its having the firmer
basis recognized, has been thought as "totally intractable" (ref. 3) for
flows with more realistic geometry. Applications, therefore, have been
limited so far to homogeneousturbulence, where physical quantities
depend only on relative location of the two points. If, however, an
assumption is made that triple correlation in Eq. (i) is negligibly small,

the equation is seen to be separable independently of its flow geometry.

Actually this observation has rendered the equation separated out of (i)

an Orr-Sommerfeld equation (ref. 2).

The feasibility of the variable separation has been found originally

by a heuristic observation, therefore, it has been believed for some time

that such a separability would be restricted to incompressible flows.

Actually, allowance for the density fluctuation in the case of compress-

ible turbulence makes it difficult to judge its feasibility on intuitive

basis. We will see, however, that the separability of the equation is

examined more easily through the kinetic equation rather than its moment

(fluid-dynamic) versions. Following this guideline we will examine the

structure of the kinetic equation of the second BBGKY hierarcy governing

a correlation function between two phase-space points z = (x,v) and

= (_,Q). The correlation function as meant here is defined by

g(z,_) _ <A{ A_> (5)

where A{ denotes instantaneous fluctuation

A{ H { - f (6)

of the microscopic density (ref. 4) around its average

f = <{> (7)

namely, the Boltzmann function. There are direct relationships between

the kinetic mean and fluctuation variables given here and those in fluid-

dynamic space as defined loosely by (3) and (4). These are given con-

sistently with the classical kinetic theory as

uj = p vj { dv (8)

Auj = p-I ] vj A{ d$ (9)

where p is the density, and where the ad hoc assumption of incompress-

ibility is made for brevity of the exp essions. By taking product of the



instantaneous velocity fluctuations (9) at different space points x and
x, and then taking average, we have an expression for turbulent velocity

correlation tensor

--2 I ÷<AujAu/> = p vj Vl g(z,9_)d_ dv (i0)

where the definition (5) of kinetic correlation function g has been

incorporated. The function g of form (5) includes, by its nature, two

types of fluctuations in gases; namely, the thermal and the turbulent

fluctuations (ref. 2). In what follows, the first effect is ignored

since it is by far the smaller in magnitude, also we are interested only

in fluid mechanics. If g = 0 the gas is in (binary) molecular chaos.

B. A Perspective of the Work

Examination of the structure of the two-point kinetic equation

reveals a fact that the variables are separable into two groups (z,t)

and (z,t) under any conditions of geometry or compressibility of a flow

if, in the equations, the term of triple correlation is negligible com-

pared with those of binary correlations,

<Af = o (ll

in other words, if the gas is in "ternary" molecular chaos. (First

separability condition, section II.). The separated equation in (z,t)

space forms a closed set together with the Bo]tzmann equation in which

g of (5) is retained in the collision integral. Each of the coupled

equations is moment-expanded by means of 13-moment method, providing

with 26-moment fluid-dynamic equations. Coupling between mean and

fluctuating quantities is effected through only two terms representing

the Reynolds stress and the turbulent heat flux density in the mean

momentum and the energy equations (section III.). This method gives us

a means for a more direct formulation of grid-produced turbulence as

time-independent and cylindrically-isotropic phenomena, enabling us to

find a solution hidden behind the conventional assumptions. Also the

method provides us with dispersion relationships, showing that the grid

turbulence consists of two modes, the one stationary relative to the

grids, the other frozen to the fluid; the latter alone obeys Taylor's

hypothesis. An initial-value problem is posed in such a form that com-

plete knowledge of the velocity correlation is provided in terms of



frequency-analyzed transverse correlation data prescribed at an initial
plane (section IV.). Application of the proposed formalism to incom-
pressible wall turbulence is also undertaken. The separated fluctuation
variable is, in this case, governed by Orr-Sommerfeld's equation (ref. 2).

Difficulties in solving the equation, caused by anomalous velocity

variation near the wall is circumvented by devising a new asymptotic

method. Essential role of three-dimensionality of fluctuations is main-

taining Reynolds stress is elucidated using the tool (section V.). In

section Vl. the first closure condition is discarded and is replaced

with the second closure condition

_t = _tt (12)

where #t and Ctt denote, respectively, separated variables through which

triple and quadruple correlations are formed. This closure retains terms

of the triple correlations in the two-point equation, deducing this and

three-point equations in an identical form through the variable-separa-

tion. The resulting separated equation describes contribution from the

triple correlation as a convolution integral, indicating primary role

of the term to be energy-cascading that is far reaching in the frequency

space.
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SYMBOLS

magnitude of total wave number defined by (i01)

complex amplitude of Laplace mode defined by (82)

complex amplitude of Oseen mode defined by (82)

quantity defined by (B.13)

operator defined by (124)

complex amplitude of Oseen mode defined by (81)

velocity gradient at the wall nondimensionalized by

uniform flow velocity u and geometrical characteristic

length £

isothermal speed of sound (39)

wave velocity defined by (i01)

differential operator d/dy

four independent solutions of Orr-Sommerfeld equation

given by (115)

Boltzmann function

microscopic density, or instantaneous number density in

the phase space

defined by (6)

two-particle distribution function

quantity defining ¢2 through (B.15)

correlation in the phase space

threedimensional Hermite polynomials

integrals given by (B.30)

Boltzmann collision operator defined by (15)

quantity given by (B.36)

complex wave number in stream direction

=(kl,k2,k 3) wave number vector

operator defined by (54)

linear operator defined by (113}

linear operator defined by (114)
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SYMBOLS (Continued)

geometrical characteristic length

mass of a particle

mean mass flux density

nonlinear operator defined by (2)

mean pressure; defined by (40) for compressible flows

instantaneous pressure

turbulent stress deviator tensor defined by 46)

turbulent heat flux density defined by (47)

separated velocity fluctuation variable for incompressible
flows

expansion coefficient of _ defined by (48)

Reynolds number defined by (79)

designating real part

turbulent correlation in physical space

defined by (84)

quantity defined by (B.16)

velocity of a uniform flow

j-component of mean velocity

j-component of instantaneous velocity

j-component of instantaneous veloicty fluctuation

defined by (3)

quantity defined by (B.7)

coordinate in the (molecular) velocity space

quantity defined by (B.7)

Wronskian given by (B.23)

Wronskian given by (B.27)

Wronskian given by (B.34)

coordinate in the physical space

auxiliary variable defining Y
3
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SYMBOLS (Continued)

defined by (95) and (97)

n-th order eigenfunction in the successive approximation

(109) obeying (ii0) through (112)

auxiliary variable defining Y through (97) and obeying
(I00) 3

z (_ _= rV)

wave number in streamwise (x) direction (defined by (95))

quantities defining ¢4 through (B.21)

wave number in spanwise (z) direction (defined by (95))

designating deterministic perturbation

scaling parameter defined by (105)

four independent solutions of (107)

separated fluctuation variables

defined by (70)

linear operator defined by (133)

thermal conductivity coefficient (in the main text).

ah hoc variable defined by (B.5) (in Appendix B)

viscosity coefficient (in the main text)

ah hoc variable defined by (B.5) (in Appendix B)

kinematic viscosity

density

quantity defined by (B.13)

threedimensionality of the fluctuation defined by (98)

defined by 24)

nondimensional molecular velocity defined by (38)

independent variable defined by (105)

operator defined by (18)

operator defined by (127)

constant separating variables (see (16) and (17))

local Maxwellian distribution defined by (37)
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Superscripts

+

SYMBOLS (Concluded)

taking average

symbol designating a second point

symbol designating a third point

complex conjugate

pertaining to quantities nondimensionalized by the

friction velocity and the kinematic viscosity



II. KINETIC EQUATIONIN SEPARATEDFORM

A. BBGKYHierarchy Closed at Two-Particle Equation

According to the standard BBGKYhierarchy formalism the one- and
two-particle equations with the latter being truncated by closure con-
dition (ii) of ternary molecular chaos, are written• respectively, as

+ v f(z) = J(zl_)[f(z)f(z) + g(z,Z)]x= _ •

+ v -- + v g(z,z) = J(z!z) [f(z)g(z•z)

(13)

• ~ + J(zlz)[f(z)g(z,z) + f(_)g(z,z) ]_=_ (14)+ f(z)g(z Z)]x=x

where f is the Boltzmann function defined by (7), g is the kinetic
correlation function given by (5) and connected with two-particle dis-

tribution function fII of the BBGKY formalism through

g(z,z) _ <Af A_>

= fii(z,z) - f_

In this formula and in what follows an abbreviated expression f = f(z) is

employed. The operator J(zlz) in Eqs. (13) and (14) is the Boltzmann

integral operator which acts on the field particle z in the manner

~ _ 1 [g(z' _') - g(z,_) ]dKdvJ(zlz) [g(z) ]x=x m

with (15)

dE _ 2_Iv - QIbdb

In order for the two particles z and z to execute a molecular collision

we need to impose a condition x = x, which is indicated as a subscript

to the collision integral. In this collision integral the quantities

with prime denote the state before a collision leading to unprimed state

upon collision• b is the impact parameter, and m is the mass of a

particle.

10



B. Separation of Variables

The form of equation (14) suggests possibility of the six-dimen-
sional equation to be separated into two groups of variables z and z by
assuming

g(z,z,t) E <A{ A_> = I #(z,t;w) $(z,t;w) dw (16)

This expression, substituted into (14) and rearranged properly leads to

the equation of the following form

with

^A

_¢ - _¢ - iw (17)

_¢ --- + v ¢(z) - J(zlz)[f(z)_(z) + f(z)¢(Z)]x= _

and with _ defined likewise, namely, with variable z replaced by z. Note

that the time t is the only variable common in both _ and _. In line

with the general separability theorem, the left-hand side of (17) is

only a function of z, whereas the middle term depends only on z; there-

fore iw is necessarily a constant separating the variables. The govern-

ing equations for _ and $ take, accordingly, the following forms

_ - iw_ = 0

^^ ^ / (19)f2¢ + iw_ = 0

In view of expression (18) we see that ¢ and $ obey a linearized Boltzmann

equation in a generalized sense (_ _ 0). It is also seen that the

separation constant w has the dimension of the frequency. It would be

natural to postulate that correlation function g be symmetric with

respect to its arguments (z,z) . As is easily seen from (16), this con-

dition is met either with $ = ¢ or with

= q_* (20)

where the symbol (*) denotes the complex conjugate. This latter require-

ment is satisfied, in view of Eqs. (19) and reality of operator _, if

and only if

w* = w, or w; real (21)

ii



In contrast, the former condition (¢ = 9) together with Eqs. (19)

requires necessarily _ = 0, resulting in a trivial solution (ref. 2)

¢ z 0. These observations indicate that ¢ is essentially complex.

It seems to be worthwhile to remark at this point certain parallelism

of function ¢ to Schrodinger's function Y, and of Eq. (19) to Schrodinger's

equation

H_ - i_8_/_t = 0 (22)

where H and _ are Hamiltonian operator and Planck's constant, respec-

tively. Both of the equations have the imaginary factors associated with

temporal operators based on essentially physical basis, not as a result

of mathematical method of solution (c.f. Eq. (35) below). Also, both of

the dependent variables _ and _ are related through the same bilinear

forms to the same quantity, namely, the probability density. Its actual

form in the case of the Schrodinger function is well-known: the quantity

_*_dx gives the probability of finding a quantum particle within a three-

dimensional volume dx in the physical space [x +,x+dx]. The counterpart

expression for ¢ follows from (16) and (20), namely,

^ fg(z,z) = <Af Af> = X(z,z;_)d_

with

×(z,z;_) = R(¢(z;_)¢*(z;_)}

(23)

(24)

where the symbol R{ } denotes taking the real part. In fact X is bound

to be a real quantity because expression (23) defines its physical

meaning as the spectral density (in the frequency-space) of turbulent

correlations in the phase space. More precisely, expression <Af Af>dvdv

gives the probability of finding a particle located at x in a cell

[v,v+dv] of the (molecular) velocity space and another one that is

located at x, interacting with the first one, to be found in a cell

[v,v+dv]. Therefore, the quantity

R{¢(z;m)¢*(_;_) }d$ dO dw (25)

gives the probability of finding such two particles in the frequency

subspace [_,m+d_], in addition to their being in the cells d$ and d$,

respectively. Since the function ¢ is attached physical meaning only

via (25) as in its equivalent _*$d_ for the Schrodinger function, the

following transformation

12



$ _ eie$ (26)

where _ stands for any real quantity, keeps observable quantities
invariant as in quantum mechanics.

Expression (25) constitutes a basis on which any two-point quanti-
ties of fluid turbulence can be calculated. For example, the turbulent
correlation between velocities at two points x and _ is, from (23) and
(iO) ,

<AajA_/> = R{ de(vjSd_) ( $*dQ) } (27)
J

and likewise for any other macroscopic quantities definable in the

classical kinetic theory.

With these physical backgrounds the Boltzmann function f and the

separated fluctuation variables @ form a closed set consisting of Eqs.

(13) and (19). These are written, in view of (23) and (24), as

+ v f = J(zlz)[ff + R{ $(z)@*(z)d_}]x=_

-i_ + + v $ = J(zI_)[f(z)$(_.) + f(_)$(Z)lx= _

(28)

(29)

Needless to say that Eq. (28) is exact in the present context, whereas

Eq. (29) which is a result of separation of variables is subject to,

but only to assumption (ii) of 'ternary' molecular chaos. We see, there-

fore, that the separability is not affected by compressibility or geom-

etry of the flows, proving the point at issue stated at the beginning in

Section I.A.

C. Implications of Dual Time-Dependency of Eq. (29)

As a result of introduction of the separation constant _ having the

dimension of the frequency, Eq. (29) is seen to have dual time dependen-

cies through explicit (_/_t) and implicit (-i_) temporal operators. We

will show that the former acts on deterministic unsteadiness associated

with its mean motion, whereas the latter reflects stochastic unsteadiness

of the turbulent motions that is averaged out, so is not to appear

explicitly, in the one-point regime (Eq. (28)). Regarding the explicit

one an explanation will be given through an assertion that if f is

13



time-independent, so is _. The contrapositive of the statement is; if

turns out to be time-dependent, it is caused by time-dependency of f. In

other words, explicit time-dependency (_/_t / 0) is due only to unsteadi-

ness in mean motion of the turbulent flow.

Proof of the assertion, in its first expression is the following:

For a time-independent f, Eq. (29) allows a formally time-dependent

solution

_(z,t) = exp(-i_ot) _o(Z) (30)

The invariance, however, of physical quantities under transformation (26)

applied here assures that the temporal factor in (30) does not affect on

physical quantities, so does not generate unsteadiness of a new class to

be superimposed on the steady background flow. (Note that _o of (30) be

real in order to keep g(z,z) of Eq. (23) symmetric with respect to z and

_.)

We have thus proved that for steady mean flows temporal factors

are involved in ¢ only through implicit dependence (-i_). This is a

fundamental property of turbulent fluctuations as distinct from

deterministic perturbations such as Tollmien-Schlichting waves that

are bound to be explicitly time-dependent.

It seems to be difficult to draw a clearcut picture as to the

implication of the implicit time-dependency at this stage. In a sub-

sequent section (Section IV.C), however, the quantity _ introduced in the

theory as a separation constant will be given a firmer physical basis

through a dispersion relationship derived for grid turbulence, where

_/k I (kl; the wave number in stream direction of the turbulent fluctua-

tion) is interpreted as the propagation velocity of a turbulent vortex.

In this connection the implicit time-dependency may be thought as having

its physical origin in stochastic elements of coherent turbulent vortices;

for example, the lifetime of retaining their identity as observed in a

free shear layer (ref. 5), or stochastically repeated up- and down-washes

in the wall-shear layer considered as being caused by aligned longitudinal

vortices (ref. 6).

D. Turbulent Fluctuation ¢ as Distinct from Deterministic

Perturbation 6f

Suppose a small time-dependent disturbance 6f(z,t) superimposed on a

steady basic flow described by the Boltzmann function f which is time-

14



independent otherwise. The small disturbance 6f as meant here is of
fluid-dynamic nature, regardless of its kinetic-theoretical expression,
as would be seen from its definition

13
6f : _ (_f/_A I) 6A1 (31)

I=i

where A1 stands for 13 mean fluid-dynamic variables specifying the
Boltzmann function (ref. 7).

Let us observe turbulent phenomenain which the two fluctuations 6f
and _ are coexistent. One such example is a boundary-layer undergoing
natural (ref. 8) or forced (ref. 9) transitions where 6f corresponds to
naturally or artificially generated sinusoidal perturbations. Under
this condition the function } is necessarily responsible for turbulent
part of the flow observed as bursts and/or turbulent spots in the experi-
ments. In these experimental observations where both deterministic and
turbulent fluctuations are operating, we are especially interested in
the situation where condition

o(I I) -o(16fl)

holds. For superimposed perturbation onto a basic distribution which,

otherwise, is time-independent;

f+f+6f

we see from Eq. (28) that f and 6f obey the following equations;

+ v 6f = J(z]z)[f6f + f6f]x= _

(32)

(33)

where term 6_ induced responding to 6f is ignored because of its second

order smallness. Since Eq. (33) is linear in 6f and depends on t only

through the derivative it reduces, by putting

6f = R{exp(-i_ot) 6h}
(34)

to

15



[-iWo + _ _]6h = J(zlz)[fSh + f6h]x:_ (35)

The requirement for reality of 6f in (34) comes from the fact that the
fluid-dynamic perturbation

6A = a(z)6fdv

where A is a macroscopic variable and a is its particle-dynamic equivalent,

is an observable quantity such as the Tollmien-Schlichting wave.

It is noteworthy coincidence that Eqs. (29) and (35) governing _ and

6h, respectively, are identical in form under steady flow condition

(_/_t = 0) in the former. The coincidence, however, breaks down at the

point of their different ways of interaction with the mean flow, reflec-

ting their difference in physical nature. It is readily seen from Eq.

(32) which reads

+v
+ R{/*_*d_} ]_: x (36)

where Eq. (34) has been used. An obvious distinction is generation, on

one hand, of (temporal) higher harmonics, namely, of the factor

exp(i2iw t) to appear in the quadratic term of the deterministic perturba-
o

tion 6h, whereas the temporal factors cancel out from the term _* of the

turbulent fluctuation as discussed in Section II.C.

This feature of nongeneration of higher harmonics, spatially or

temporally, has been originally found in the physical space for the

Reynolds stress (ref. i0) , in contrast to the similar terms of nonlinear

stability theory (refs. 11,12) which give rise to these effects. It will

be seen (Section III.A) that the Reynolds stress in the physical space

emerges from the bilinear term of Eq. (36), proving the identity of the

two assertions. A direct observation by Roshko (ref. 5) on coherent

vortices in a free turbulent shear layer exhibits evidence of no genera-

tion of such higher harmonics in spite of their characteristically non-

linear patterns.

16



III. A CLOSEDSETOF FLUID EQUATIONS

A. Review of One-Particle Turbulence Formalism

Fluid-dynamic version of the 'turbulent' Boltzmann equation (28) has
been derived in ref. 13 using the 13-moment expansion carefully extended
to turbulent cases: Weexpand the Boltzmann function in the following
form

f(z) = p_(_) 1 + Hj£ 5pC 3

with (37)

(2_C2)3/2 exp -

where p is the average density, and H's are the Hermite polynomials

defined in terms of nondimensional velocity variable _ given by

-i
v, - 0 m.

_j = J c (38)

In order to preserve the original formality of this scheme (ref. 7), it

is required that m be taken as the average mass-flux density and C be
J

chosen as

C = (p/p)1/2 (39)

where p is a 'pseudo' pressures, distinct from the average thermodynamic

pressure _ by the added contribution due to turbulence;

p = _ + (3p) -I R(I,I).
3,3

For exact definition of the term R! I'I) see Eq. (41) below.
J,J

On the same background the kinetic correlation function g which

appears in the collision integral of Eq. (28) is expanded in a double

series of H(_) and H = H(_) as

(40)

g(z,z) = _(_)_(_)

(3,3) R (J'K)..

_ Ij..-,Im.- H (J) _(K)

(J,K) = (0, O) cJcKj !K! ' ij.- Zm--
(41)

A word must be mentioned at this point of truncating expansions (37) and

(41) at third-order Hermite polynomials in line with the 13-moment regime.

In laminar (classical) cases this is perfectly legitimate on fluid-dynamics
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point of view, because the neglected terms are of O(e 2) (£: the mean free

path), no information on fluid-dynamics are lost by this truncation. For

turbulent cases, on the other hand, the neglected terms include fluid-

dynamic quantities of 0(52), namely, terms of double correlations

A 2 <5A AB>

where A and B are any gasdynamic variables. Neglecting these terms,

however, is justified only for Maxwellian molecules because these terms

are not to intervene in the gasdynamic equations due to a special

structure of the collision integral peculiar to this type of molecules

(ref. 6).

Once the moment expansion for f and g have been assumed in forms

(37) and (41) fluid moment equations out of one-particle kinetic Eq. (28

are determined uniquely through a standard procedure, leading to

_m k
__%D+ - 0
8t

Sx k (42)

_m. _ rmkm. ]

8t _ Pjk j = 0
(43)

i 1m _
_.I + e + +--+ Pj + Qk_ p _ [2p2 p _ k = 0 (44)

with

3 _ (i,I) h - e + 7, (45)e =- _ _ + Rr, r ,

1 R!I,I)
Pjk = (Pjk)NS + p 3,k (46)

_k= (qk)F+ _ R_1'2) (47)

where (Pjk)NS and (qk)F are the viscous stress tensor and the heat flow

vector connected with the average gasdynamic quantities through classical

Navier-Stokes' and Fourier's laws, respectively. Note that turbulence

corrections to the stress tensor and the heat flow vector comprise only

-IR(I,I)
one term in each case;1 the Reynolds stress p j,k and turbulent heat

flux density (5/6)R_ 1'2) If the gas is not monatomic, the factor 5/6

is to be replaced with Y/3(Y-I), where Y is the adiabatic index. A

noteworthy remark at this point is that all the equations (42) through

(47) are written in compressibility-invariant form, so that the transport
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relationships (46) and (47), each expressed in a form with single-term
turbulence correction, is valid for compressible flows as well with no
recourse to mass averaging (ref. 13). Also, deduction up to this point
is exact within the framework of fluid description for Maxwell molecules,
independent of any closure hypothesis to be effected at a subsequent
hierarchy. Wenote that the key to the compressibility-invariant expres-
sions of turbulence equations is to employ variables proportional to
density, namely, the mass-flux density and the pressure to replace the
velocity and the temperature, respectively. With this code in mind, all
the equations derived in this section are reproducible using a priori
gasdynamic equations (ref. 13).

B. Fluid Moments from Separated Two-Particle Equation

Our task in this paragraph is to derive from Eq. (29) equations
governing the Reynolds stress R!I'I) and the turbulent heat-flux R_1'2)"3,k
appearing in turbulent transport relationships (46) and (47), respectively.
For this purpose we expand the dependent variable ¢ in the form:

lq _(i) (2) _(3)
_(z) : _(_) (0) + qj H(1) + qjk H(2) '-lj (3

C j 2C 2 jk + 5C 3 H.3 (48}

This form of expansion assimilates the 13-moment expansion (37) for the

Boltzmann function except that the coefficient of the first order Hermite

polynomial is nonvanishing, also the tensor coefficient of the second

order has a nonvanishing trace;

q(2),. = q(2) (49)
-33

This situation arises from the fact that we have no degrees of freedom

left out to suppress these quantities because these have been depleted

in defining the expansion form of the one-particle distribution.

Expansion coefficients q's of (48) are related to those R's of (41)

through (23) and (24). For example, the Reynolds stress and the turbu-

lent heat flux are given in bilinear forms of q's through putting x = x;

R(I, I) I _ I) + (1)* 4j,k = R{ q (x) qk (x)d_}

I _i)R! 1'2) = R{ q (x) q
]

(2)* +
(x)d_}

5O)
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Equations governing q's in the fluid-dynamic space are obtained from
(29) through the standard momentexpansion procedure familiar in the 13-
moment theory and are detailed elsehwere (ref. 14). Only the final form
of the equations would suffice for what follows:

qj + qr _x + _x.
r 3

rq l)1

(I)
(0) qr

Lq + _x - 0 (51)
r

y J

+ q(0) ___i = 0 (52)
_jr _x k D t

L[3 p (2)I + p(2) _x_wr
r-- + _-_r Uqr , _x r _x r

+ qr(I) DwrDt _ _A r_gw' _j [ (1<]

(l)

_ (i)

- 3 _jr _x k = 0
(53)

with the following definitions of the symbols,

Lq ---- imq + + _ Wrq (54)
r

p(2) _ 1 (2) (0)- 3 q + c2q (55)

m
_ r

w _
r p

D _
- + w

Dt _t r _x
r

where U and I denote the molecular viscosity and the molecular heat con-

ductivity, respectively.
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The system of Eqs. (51) through (53) comprises five equations to
determine five unknowns q(0) (i) and q(2) (or p(2)) that correspond, qj ,

• and QR_T(or _p) respectively, of deterministic perturba-to _p, p_w3
tions. Actually the system reduces to that of fluid-dynamic stability
for compressible flows (ref. 15) if we put _ = 0 in definition (54) for
operator L together with the envisaged substitution for q's. This proves
in the fluid-dynamic space the formal similarity existing between kinetic
equations (29) and (33).

IV. GRID-PRODUCEDTURBULENCEIN THELIGHT OF SEPARATIONOF VARIABLES

A. Steady-Flow Formalism Without Isotropy or Taylor's Hypotheses

Nowadays, a widely used means of understanding experimental data on
wind tunnel- or grid-produced turbulence is to utilize the theory of

isotropic turbulence with proper interpretation for obtained solution.

This method of approach, however, is subject to two assumptions in

addition to the one for closure. The first of these is that grid-produced

turbulence is (spherically) isotropic. Speaking more exactly, this is

an approximation, in nature, rather than an assumption; in fact, a grid-

produced turbulence is not spherically but cylindrically (or axially)

isotropic (ref. 16) because the presence of a constant field vector

u = (U,0,0) (U; the mean velocity in the wind tunnel) distorts the tensor

field to be so. A consequence of the isotropy assumption is to suppress

the pressure-velocity correlation identically (ref. 17):

R (I'2). = <Au .A_> = 0 (56)
3 3

In the lack of this quantity (and under homogeneity condition) the triple

correlation A 3 is the only term causing effects other than simple trans-

lation or molecular diffusion of turbulence. (See Eq. (138) of Section

VI.). The danger is; if a slight anisotropy (in the spherical sense)

exists in the actual grid flow, causing a slight response in the form of

(1,2) it may well dominate effects due to the terms of
nonvanishing Rj

O(A 3) because it is of O(A2); a lower order correlation. This means that

the isotropy postulate needs to be checked carefully before the quality

of a closure condition to be effected on A 3 is discussed on the basis of

comparison with experiments done for a grid-produced turbulence.

The second assumption is Taylor's assumption claiming that the turbu-

lence fluctuation is carried with the mean flow;
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X
m

t U (57)

where U is the (constant) velocity of the wind-tunnel flow. This assump-

tion is needed to interpret space (x)-dependent experimental data in

terms of time-dependent solution of the isotropy theory. This assumption

has no precarious effects as the isotropy assumption does. It would,

however, be avoidable to invoke if a more direct formalism is available

such that decay of turbulence is described in terms of space coordinate x

instead of time t. We will show in what follows how these hypotheses are

eliminated, and will see what are hidden behind.

B. A Hidden Solution

With a frame of reference fixed to a grid or turbulence generating

apparatus, Eqs. (51) and (52) under uniform (u = constant) and steady

(_/3t = 0) flow conditions read

3_(I)
(0) _r

Lq + 3x - 0
r

. (1) [32-(1)-- - v qJ + I 3

Lqj + 3xj [ 3x 2 3 3x.
r 3

3x r

= 0 (59

(58)

with

3
L - - i_ + U (60

3x I

where _ denotes the kinematic viscosity. Taking divergence of Eq. (59)

and eliminating the pressure p(2) from the two equations, we have

2 (i) 3q(1)
3 qj 3 r

. 3x3x 3x 3 r

= 0
(61

(0)
or for incompressible flows (q = 0)

3q_ I)
- 0

3x.
3

(62

41 = 0 (63
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Note that Eq. (63) is the Orr-Sommerfeld equation under a uniform flow
condition. The solution of Eq. (63) is written in the form:

(i) + (64)qj = qo,j qL,j

where qo,j and qL,j obey, respectively, a generalized Oseen equation and
Laplace's equation;

- i_ + U _xI _ qo,J

2
qL,_ - = 0

ax 2
r

= 0 (65)

(66)

Before proceeding further it would be relevant to see at this point

how Eq. (63) compares with the classical counterpart under the same

approximation A 3 = 0: In the classical theory this case has been called

the final stage of decay, and the governing equation is

- 2v 3 ,1
= 0 (67)

where r k denotes x k - Xk" Equation (67) is apparently a diffusion

equation, parabolic and of the second order, whereas, in contrast, our

equation (63) is elliptic and of the fourth order. This difference is

mainly ascribed to the a priori lack of the pressure-velocity correlation

(56) that is an immediate consequence of the isotropy postulate, causing

thereby a difference by the factor of Laplacean.

C. Dispersion Relationships

The two types of mode given by qo,j and qL,j of (65) and (66),

respectively, are attached simple physical interpretations through dis-

persion relationships; namely, relationships between the frequency _ and

the wave number k.. To obtain this we assume q in the form
3

q = exp ik.xo (68)
3 3

where k 2 and k 3 are taken to be real reflecting invariance of correlations

with respect to Galileian transformation in (x2,x 3) plane normal to the

flow direction. Then for the Oseen mode qo' we have an algebraic version
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of differential equation (65) in view of (68):

2 + <2
-i_ + i(kl)o U + v[(kl) 0 ] = 0 (69)

with
2 2 2

< = k2 + k3 (70)

Expressions (69) determines complex wave number

= + i (k I) (71)(kl)o (kl)o,r O,i

in the form;

w
- U (72)

(kl)o, r

= v [ (kl)2 + <2] (73)(kl)o,i U O,r

Since the quantity on the left-hand side of (72) means the wave-propaga-

tion velocity, this relation shows that the wave propagates at the fluid

velocity; namely, the turbulence is frozen to the fluid. In other words,

this mode obeys Taylor's hypothesis. Although (72) as the solution of

Eq. (69) is subject to an approximation, correction terms to appear on

the right-hand side is shown to be of O(v2), proving that this mode obeys

the Taylor rule exactly within fluid-dynamic regime. Condition (73), on

the other hand, describes how this mode decays spatially.

In a similar way we are led to the dispersion relationship for the

Laplace mode: Substituting (68) into (66) we obtain

(kl)L, r = 0 (74)

(kl)L, i = < (75)

claiming that this mode is stationary in space, namely, relative to the

grid, and spatial rate of decay is <. It shows us that this mode decays

faster than the previous mode (73) (~O(v)) , so that it is observed

immediately downstream of the grid, then is followed by the Oseen mode,

corresponding to the final stage of decay. Thus we have learned that the

turbulent field consists of superposition of two modes, the one obeying

and the other disobeying the Taylor hypothesis, respectively, and that

the hypothesis is met better as we go downstream because of faster decay

of the Laplace mode.
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D. Determination of Axially-Isotropic Correlation Tensor with Given
Data at an Initial Plane through a Bessel Inversion

As contrast to the classical theory which is time-dependent and
spherically isotropic, we aim at formulating the velocity correlation
tensor as space-dependent and axially-isotropic. For this purpose it
seemsmore convenient to write our governing equations (62) and (63) in

the form

[- i_ + _x R

]
+ _x R 8y ) =

0

(i) (i) _q_l)_ql _q2
-- + + = 0

ax _y az

(76)

(77)

(78)

with

(x,y,z) = _ (Xl,X2,X 3)

V2 = _2/_x2 + _2/_y2 + _2/_z2

1
R= U--

_)

-- ÷ _, (redefinition)
U

where R is the Reynolds number, and the grid mesh size 1 is used as a

characteristic length for nondimensionalization. If the solution is

sought in form (68), where we have redefined

(79)

lk. + k.
3 3

Eqs. (77) and (78) are solved for q_l) and q_l) as

(i) -2
q2 = i<

(1) -2q = iK

_x

_q_l)

-k2q + k3 _x

(80)

where q is an auxiliary function obeying eq. (65). We can, therefore,

put
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with complex constant BO.
solution

= BoqO (81)

As for q we have already obtained a general

(I)
= Aoq O + ALq L (82]ql

where qo and qL obey (65) and (66), respectively.

Our task here is to show the following: the complete knowledge of

the correlation tensor

3,I = qj tx)q£ (£]d_dk2dk 3 (83)

at any set of points (x,x) is provided if a complete knowledge of the

tensor element is given at the initial plane

x:£:0

as functions of the transverse separation

1/2

r : [ (y - y) 2 + (z - z) 2] (84)

and in the form of frequency-analyzed correlation

R (I'I) [ R (I'I) d_
j ,1 : ] ( j ,1 )

(85)

as appearing on the right-hand side of the integral. In mathematical

language, six independent initial data of the symmetric tensor

[R_I'I)(r)]- in the transverse plane x = _ : 0 are necessary and suffi-
,1

cient for unique determination of six constants; A O, A L, and B O in (81)

and (82).

The way in which these complex constants are calculated in terms of

the initial data is described in some detail in Appendix A. A brief

sketch of the solution through a functional inversion and the meaning

of the obtained results are discussed here: From Eqs. (83), (68), and

(82) we have

_ I iklX -Kx) * -ikl*XR(I'I) (x,_) = 2_ (AOe + ALe (Aoe
i,i

. -K_
+ A L e )J0(<r)<d<_d_<

(86)

26



where k I is given by (71), J0 denotes Bessel's function, and an integra-

tion with respect to the azimuth angle arctan k2/k 3 has been carried out.

At the initial plane x = x = 0, and in terms of the frequency-analyzed

initial data of (85), Eq. (86) reads

co

0

This relationship is inverted by means of an integral formula (A.9) to

give

1 f R(I'I)] rJ0(<r)dr (87)(Ao ÷ AL)(A ÷ A[) = [ 1,1
0

Six independent relationships of similar forms are obtained likewise.

These determine constants A O, A L, and B 0 uniquely depending on two para-

meters; the frequency _ and the transverse wave number _.

Approach along this line, in principle, to the grid-produced turbu-

lent phenomena has been initiated by Nakagawa (ref. 18). The formulation

described here is essentially the same except that in the earlier work

the Laplace mode was suppressed (A L = 0), so that the initial-value

problem with the full tensor components as posed here would have caused

overdeterminacy.

E. Pressure-Velocity Correlation as a Prime Order Quantity

Once the amplitudes of the two modes have been determined uniquely

((A.10) through (A.15)), we can show that the pressure-velocity correla-

tion

R(I,2)j = ] qj(1) (_)p(2)*(x)d _ dk2dk3 (88)

is necessarily nonvanishing and behaves as a correlation of prime order

of magnitude as contrast to R (I'2). _ 0 of the isotropic turbulence, also
3

to R (I'2). - O(A 3) of some other cases of homogeneous turbulence.
3

Solutions (82) and (80) for (i) and Eq. (59) solved for the

separated pressure fluctuation p give

p(2) = -(i + i_/<)ALq L (89)
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An important implication of this formula is that only the Laplace mode
contributes to the pressure fluctuation, namely to generation of noise,
so that the Oseenmode is interpreted as representing quiescent component
independent of its turbulence intensity. Since the quantity p(2) is
proportional to noise amplitude human timpanic membranesperceive, this
observation serves to give an intuitive criterion as to whether the
Laplace mode is important under an experimental condition: It would be
non-negligible compared with the Oseen mode if noise is sensible in the
process of generation of a grid-turbulence. According to this criterion,
the Laplace mode seems to play a role even for relatively low-speed flows
through a grid such as an outlet flow of a room airconditioner.

In view of expression (89), the pressure-velocity correlation (88)

is seen to consist of terms of O(AoAL), O(Ai), and O(BoAL)• Since none
of these terms vanish other than exceptional cases of no particular

interest we may conclude that the pressure-velocity correlation has the

same order of magnitude as other double correlations. This conclusion,

as it contrasts drastically with the formula R (1'2)
~ O(A 3) used for

3
homogeneous turbulence, will need a supplementary explanation to reconcile

the seeming gap: If a flow is homogeneous but not spherically isotropic,

R (I'2). is shown to obey Poisson's equation of the form
3

8 2 (1,2)
-- R. = o(A 3)

j
r

where the source term comprises only the triple correlations. Its general

solution is given, accordingly, by

R! 1'2) = P + H
3

where P(~O(A3)) is a particular solution of the Poisson equation, and H

is a harmonic function to be responsible for the boundary conditions. It

should be borne in mind that the assertion R! 1'2)
~ O(A 3) above holds

]

only under the condition H - 0 or O(A3), which is the case with the

homogeneous turbulence with boundary conditions given at infinity. The

fact that we are dealing with a flow which is semi-infinite (x _ 0) in

extent rules out the possibility, because the function H should cope with

a boundary condition that is imposed at a finite point (x = 0), and is

of O(A 2) as has been assured.
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V. APPLICATION TO INCOMPRESSIBLE WALL TURBULENCE

A. The Reynolds Stress as Coupling Function

In this section we will focus on incompressible shear turbulence

with special reference to wall turbulence, and will see how the equations

governing fluctuations are coupled with those describing the mean motions

by demonstrating the actual expression of the coupling, namely, the

Reynolds stress.

Under the condition of incompressibility (p: const., q(0) = 0)

equations governing average and fluctuating quantities constitute a

closed set with Eqs. (42), (43) , (51), and (52);

_Ur/_X r = 0 (90)

_r I * de} (91)• = -R{ qj qr(NS) 3

_qr/_X r = 0 (92)

_t _ 22 _u. 1 _p(2)
(-i_ + + Ur _x r _ _--_)qj + _ qr + --p_--_-_--. = 0 (93)

3
r

where (NS) . is the Navier-Stokes' operator (2) replaced with the average
3

quantities, and qj is defined by

-1 (i)

qj
= p q_

3

If, in addition, the flow is considered to be a parallel flow

uj = U6jl u(x 2) (94)

with x2-axis taken normal to the wall surface, we can assume, without

loss of generality, as

where

qj = Yj(y)exp i(_x + Yz)

(x,y,z) = (Xl,X2,X3)//

(95)

(96)

denotes a cartesian coordinate nondimensionalized by a fluid-dynamic

characteristic length 1. In expression (95), e and Y are wave numbers

in the directions of the velocity (x) and the (minus) vorticity (z),

respectively, made nondimensional in terms of 1.
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• and qj are dependent on eachSince, in our system, the quantities u3
other through Eq. (91), the parallel flow assumption (94) prohibits the
Reynolds stress to appear on its right-hand side from depending on x
and/or z explicitly. It leads necessarily to the requirements that both

and Y be real. In fact, if _ is a complex number, the Reynolds stress

would be x-dependent like exp[-21(_)x], where I ( ) stands for the

imaginary part. Of the two requirements, reality of Y is understood as

a postulate for invariance of the Reynolds stress to a Galileian trans-

formation in the y-z plane. Reality of _, on the other hand, limits

permissible classes of solutions to those u(y) 's which have neutral

stability under a certain condition. It will be discussed in Section V.D.

Provided, for the time being, that the condition is fulfilled, Eqs.

(90) through (93) reduce to a system of ordinary differential equations

in y in the following fashion: First we introduce two auxiliary variables

Y and Z to represent Y. of (95) obeying constraint (92) of the continuity
3

condition;

i 02

Y1 - (DY + Z)
1+02

Y2 = Y

i0
Y = Z

3 _ (1+02)

(97

where we have introduced the notations

and

D = d/dy

0 = y/_ (98

the latter representing a three dimensional effect of the fluctuations.

Equations governing Y and Z are, then, obtained from (93) by eliminating

the pressure fluctuations, yielding (ref. 10)

[ (u-c) (D2-A 2) 1 (D2_A2) 2
i_R - u"]Y = 0 (99

1 _A 2 Fy 1 (D 2_A 2
[u-c ieR (D2-A2)]Z = J [u-c ieR )]Y dy (I00

where u' stands for Du, and
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m = Ut/,J

A (i + 02) 1/2 (i01)
=

c : 0J/_

respectively, give the Reynolds number, the magnitude of the wave number

vector, the streamwise propagation velocity of the coherent wave as

discussed in Section IV.C. In the latter expression _ is the nondimen-

sional frequency subject to redefinition (79).

Boundary conditions for Y and Z are obtained through the fact that

the fluctuation amplitude (97) must vanish at the solid boundary or at

an asymptotic limit where the flow tends to equilibrium;

Y = DY = 0

(102)
Z = 0

Equations (99) and (i00) for Y and Z constitute a closed set together

with the Navier-Stokes equation (91), namely,

where

(NS)I = -dRl2/dY

I 02 ,Rl2(Y) = R{i e-I(Dy + Z)Y de}
1+02

is the shearing component of the Reynolds stress nondimensionalized

properly. Without solving for Y and Z, it is assured from condition
2

(102) that Y-y and Z~y for y<<l, so that the Reynolds stress (104)

3
varies like y in agreement with the known dependence (ref. 19) in the

viscous sublayer.

(103)

(104)

B. A New Scaling of the Orr-Sommerfeld Equation

Appropriate for Wall Turbulence

The fact that the amplitude Y for the y-component of the turbulent

fluctuation obeys the Orr-Sommerfeld equation as evidenced by Eq. (99)

has been pointed out in reference 2. For a fully-developed wall turbu-

lence, however, the equation has a peculiar difficulty in the method

of solution caused by the fact that the curvature term u" of the equation

has an extraordinary magnitude, not to be neglected as is disposed of

through the classical scaling (refs. 20,21). A key to the solution is

provided (ref. i0) by employing a new scaling parameter 6 in stretching
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coordinate from the physical (y) to the scaled (q) ones;

r] = y/_
-i/2

£ : (_R)

(105)

-1/3
Note that the classical scaling is c - R

stretching is greater for the present case.

Orr-Sommerfeld equation (99) reduces to

, so that the rate of

With this scaling law the

"y'- i(u-c)Y + i_Y : 0 (106)

with

= dy/dq, etc.

retaining the curvature term as a leading one, and in a form as if added

to the two-term equation of Heisenberg (ref. 20) widely used in the

stability theory.

Because of the non-negligible third term intervening in the equation

the classical asymptotic method which solves the two-term equation using

universal (Hankel) functions is no longer available here. It turns out,

however, that an alternative asymptotic method is workable through an

observation that owing to the presence of the third term Eq. (106) is

integrable once, yielding

3"- i(u-c)Y + iuY : iC I (107)

Four independent solutions ¢ of this equation are obtained with some
I

similarity to and more essential difference from the corresponding

solutions of the classical equation. For the method of solution and

their actual expressions see Appendix B. A few remarks are in order:

Solutions ¢i and $2' the counterparts of slowly varying solutions of the

classical equation, behave actually so in and only in asymptotic limit

(n >> i) ,

.n

¢i (u-c) ] (u-c)-2d

¢2 ~ (U-C)

In the region of high shearing rate (q - O(i)), these are subject to

rapid variation in contrast to 'uniformly' slow variation of the

classical solutions throughout the field.

(I08)

Two other solutions ¢3 and #4
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represent, respectively, rapidly decaying and growing functions with the

asymptotic expressions in agreement with those of classical solutions

given in terms of Hankel functions of first and second kinds. The

solution procedures are: functions _3 and _2 are obtained by solving

first order equations of which the critical layer (u-c _ 0) is a regular

point. No multiplevaluedness as encountered in the classical theory

occurs in the quadrature through the point. Once these functions are

determined through a straightforward numerical method• _4 and ¢i are

solved analytically and exactly in terms of them.

C. An Eigenvalue Problem

A salient feature of our scaling law (105) is that the scaled or

'inner' equation (106) serves also as the starting equation in a system-

atic method of successive approximation solving the full Orr-Sommerfeld

equation (99). In fact, expansion of the eigenfunction in the foIlowing

form;

y = y(0) + (eA) 2y(1) + (eA) 4y(2) + ...

(109)

substituted in the Orr-Sommerfeld equation yields the following set of

equations determining y(n) successively;

L(0)Y (0) = 0 (II0)

L(0)Y (I) = L(1)Y (0) (IIi)

L(0)y(n) = L(1)y(n-1) _ y(n-2) (n > 2) (112)

where operators L (0) and L (I) are defined by

L(O) = d4/d 4 _ i(u_c)d2/dn2 + i_ (113)

L(1) = 2d2/d 2 _ i(u-c) (114)

Equation (ii0), together with (113)• confirms the envisaged assertion not

to be expected for its classical equivalent. This property enables us

to reach the full solution F simply through advancing the successive
I

approximation starting with the inner solution _i:

F = _ + [ (eA) 2n _(n) (1:1,2,3,4) (115)
1 1 n=l 1
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The higher order approximation ¢(n) is obtained by a method of finding a1
particular solution of Eq. (Iii) or (112) as given in Appendix B.

Asymptotic expressions (_>>i) of F1 and F2 thus obtained are of particular
interest,

uc iuc
  uc2dys j(u-c)-2dy A 4 ..

Y Y

IfuelfY 1F 2 ~ (u-c) + A 2 dy A 4

2 Y^(u-c) 2dy + . .

(for y>>e)

These expressions which follow immediately from Eqs. (108) and (B.37) of

Appendix prove exact coincidence with Heisenberg's outer (inviscid)

solution (ref. 20). This fact indicates that F of (115) thus obtained
l

is valid for the outer- as well as the inner-layers, enabling us to by-

pass the conventional procedure of matching the two solutions.

With these F's having so derived the eigenfunction Y is written as

4

Y = _ C F
I= 1 1 I

Since, as seen in Section V.B, F 4 grows drastically with _, we need to

put C 4 = 0 to cope with boundary condition (102) at D = _. On the other

hand, condition Y(0) = 0 imposes C 3 = 0, because F3(0) = 1 _ 0, whereas

F 1 (0) = F 2(0) = 0.

function;

Thus we are led to the final expression of the eigen-

y : CIF 1 + C2F 2

depending only on two functions F 1 and F 2 throughout the region in

question. Note, for comparison, that its equivalent of the classical

asymptotic theory comprises three terms (C 3 _ 0). Imposition of two

(116)
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remaining conditions

Y' (0) = 0 (ii7)

Y' + AY = 0, (at y = _) (118)

yet to be satisfied by Y of (116) leads to an eigenvalue condition in

the following form,

E --

!

FI(0)

!

FI(y) + AFI(Y)

!

F 2 (0)

I

F 2(y) + AF 2(y)

= 0 (119)

Adequacy of using the outer boundary condition of form (118) in turbulent

cases is discussed in Appendix B.
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VI. THE SECONDMETHODOF SEPARATIONOF VARIABLES:
NONLINEARCONVOLUTION

In this section we will seek a condition which leaves the triple
correlation, as it appears in the double correlation equation, untouched
and under which the double correlation equation is still accessible to
the method of separating variables.

It has been shown in reference 28 that Eqs. (13) and (14) which,
according to the BBGKYformalism, are derived from Liouville's equation
through multiple integrations are also derivable on the basis of the
following equation;

This equation is the Boltzmann equation in which the Boltzmann function f

is replaced by the microscopic density f, namely, its fluctuating equiv-

alent. This equation may well be called the 'master' Boltzmann equation

in the sense that the whole system of the BBGKY hierarchy is derived also

from this equation through a more straightforward procedure. In fact, it

is easily confirmed that Eq. (13) is expressed in terms of Eq. (120) as

<B(fa)> = 0 (1211

with fa _ _(Za)" Similarly, the two-particle equation (14) with the

triple correlation retrieved is written as

<A_bB(_a) + A_aB(6b)> = <A_b_a(A_a) + A_a_b(A_b)> = 0 (122)

with operator _ defined by
a

[Tt + --_-_] - J(ZalZa)({a£{a + _aA_a
ea(A{a ) _ + v a _aJA{a + £_aAf_) (123)

Obviously Da differs from _ of (18) by the presence of terms quadratic in

A{. Because of this term Eq. (122) includes triple correlation of the

form A{aA6_A{b, therefore recourse is made to the equation of the

succeeding hierarchy for its determination. This equation is given by

< [ A_bA{cB({a)> = 0

a,b,c:
cycl.permut.]
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or, alternatively, in terms of operator _a of (123);

l

[ I<i6bA{c_a(A_ a) >

a,b,c:
cycl.permut.)

- <AfbA{c>J(ZalZ_)(<A{aA_> _
= 0

(124)

where the summation is over cyclic permutation (a÷ b+ c÷ a), each term

yielding three of them. Equation (124) comprises three kinds of corela-

tion quantities; triple and quadruple correlations in linear forms and

products of double correlations.

Let us search for the solution of Eq. (122) again in the form of

separation of variables

<D{aA{b> = I ¢(Za;_a)_(Zb;_b)6(_a + _b)d_ad_b (125)

which is an alternative expression of (16) with supplementary condition

(20). In the same way, we assume the triple correlation governed by

(124) to be separable,

<AfaA_bA_c > = f _(_a) _[_%(Za;_a)d_a ] (126)

where the sum (_) and the product (H) are over three indices a, b, and c.

An integral expression of the like is assumed for the quadruple correla-
++

tion with the integrand given by a quadruple product of Ca " In general,

a function _ of (125) will differ from _% of (126), etc.

Consider an iteration procedure in which the product of double

correlation, namely, the last term of (124) is neglected at the outset,

whereas no approximation is invoked in (122). Then, it is readily seen

that Eqs. (122) and (124) reduce to the same equation if we put

= ¢% = CTt (127)

with the resulting equation

where we have dropped the subscripts (a,b,c) because there would occur

no confusion from this point on by so doing. If the nonlinear term
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(with the integral) is deleted in Eq. (128) in line with the ternary
chaos hypothesis, it reduces to Eq. (18) as it should.

Looking back the procedure leading to the closed Eq. (128) for ¢,

we see that the second equality of condition (127) serves as the closure

condition. In fact, only under this condition, the governing equations

for ¢ and _% prove to be identical, both yielding Eq. (128), therefore

the first equality of (127) is justified a posteriori. Since it is

intuitively reasonable to interpret mathematical realization of a physical

concept of taking average < > by the integral of form (125), (126), etc.

then our closure assumption that triple and quadruple correlations are

expressed using a common variable __ = ¢%% seems to have a sound basis.

Physical implications of the nonlinear term may be easier to under-

stand by looking at the fluid-dynamic version of Eq. (128). The moment

expansion to lead to fluid equations was described in Section III, so

will not be repeated. Only the final forms of the equations _overning

the correlation tensor for incompressible flow are given here:

_) q/(__R! I'I) (x,x) = qj (x; _'-_)d_]g '

-_-_-= 0
_x.

3

-i_ + + u r _x r _ qj + 3 qr
r

+ O _x. _ qj (_-_')qr (_0')d_' = 0
3

(129)

(130)

(131)

where qj has been defined in Section V.A, the qj's except those inside

the integral of (131) stand for gj (_;_). This equation is to be con-

trasted with Eq. (93) where the triple correlation has been ignored.

For a closer look at Eq. (131) we assume the mean flow to be a

parallel shear flow [uj = _jlU(X2)], and apply an operator 62j_2/_x$ -

32/_xj_x2 to the equation to eliminate the pressure term. We have, then,
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Aq2 =
32 _ _q2(oJ-_)

qj (_')d_'_x2 ] _xjr

f _qr (_-_') q_ (_')
+ _-_2 3X. {X r

3

dw' (132)

where the operator A on the left-hand side is given by

A E

- i_ + + u _x I _ _x2j u _x I

(133)

that is, the Orr-Sommerfeld operator with added term of -i_ reflecting

the effects of the variable separation. Thus we see that the velocity

variable q2 obeys a (generalized) Orr-Sommerfeld equation, 'driven' by

terms due to the triple correlation that are quadratic in fluctuation

velocities with different internal variable, namely, different frequencies.

Thus, the role of the triple correlation has turned out to be the following:

For not too weak turbulence in which the terms of O(q) 2 still stand, it acts

as controlling the interaction between turbulent fluctuations with dif-

ferent frequencies; the form of the nonlinear interaction is mathematically

a convolution integral and physically a continuous cascade of turbulent

energy in the frequency space. This is in contrast with the role of non-

linear terms of the Orr-Sommerfeld equation of classical stability theory,

where the energy cascading is through discrete higher harmonics (refs. 1],12).

VII. CONCLUDING REMARKS

In concluding this report, a brief review from a different angle

will be given to help clarify physical implications of the two closure

assumptions we have employed; the neglected triple correlation (Section II)

and the identity of separated variables in triple and quadruple correla-

tions (Section VI). One way of doing this would be through Eq. (i) for

incompressible flows written in the following form:
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 IR llI- v -- + R (I,I)

31 _x 2 jl
+ Ur _x r r _r J I r r ]

[ f

(0) (i)

(2,1) _R!I,2)
_u. R(I,I) _GI (i i) 3R,/ ]

+ _x--_ rl + -- R. ' + + '
r _ ]r _x. ^

t r ) [ ] _Xl

l [

(2) (3)

(i,i,i) _R(I,I,I )

+ 1 3Rjr,/ 1 j,rZ
-- + -- - 0
P _x p

r SXr

I
(4)

(134)

We note that this equation is exact within this context, but is not

closed because of the triple correlations

+ + 3

R(l'l'l)jr/ (x,_,_) = p <AujAQrA_/>

intervening in the form

(i,i,i) _ [R(I,I,I)
Rjr,£ jr/ ]_:x

R(I,I,I)
also j,r/ defined likewise, depending on two space points. Equation

R(I,I)
(134) describes how the double correlation jl , in the course of con-

vection and diffusion (terms (0) and (i), respectively), interacts with

the mean shear flow (2), with the pressure-velocity correlation (3), and

with the triple correlation (4).

For the classical isotropic turbulence terms (2) and (3) vanish;

thus, the triple correlation is the only factor responsible for active

mechanism in turbulence evolution as contrast to passive ones through

the convection and the diffusion prevailing in the final stage of decay.

Grid-produced turbulence as formulated in Section IV., in contrast, keeps

another active term (3) finite, lessening the danger of making assumption

on term (4), since the latter term is higher order in correlations. Its

finiteness leads to finding of a pre-final stage where turbulence decays

more quickly than downstream (the Laplace mode), within the same regime

of ignored triple correlation.
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For shear turbulent flows where terms (2) are also finite, the
danger of neglecting the triple correlation is diluted more than in the
grid-turbulence case.

The attempt to incorporate effects due to finiteness of the triple
correlation through the second assumption is of exploratory nature.
Term-by-term comparison of Eq. (134) with Eq. (131) tells us that term

(4) is represented by an integral with respect to the frequency in the

form of a nonlinear convolution, describing a peculiar mechanism of

direct cascading of energy from one turbulent component to the other with

the frequency arbitrarily far apart. This is to be contrasted with in-

direct ones due to term (2), where the interaction between two modes

are via a mediator, namely, the shearing motion of the mean flow.
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APPENDIXA

UNIQUEDETERMINATIONOF COMPLEXAMPLITUDESAO, AL, ANDBO OF
GRID-TURBULENCEFLUCTUATIONSIN TERMSOFCORRELATIONDATA

AT AN INITIAL PLANE

The problem to be solved separately here is to determine complex

amplitudes AO, AL, and BO appearing in solutions (81) and (82) of the
(i) in terms of a set of correlation

separated fluctuation variables qj
data given at an initial plane;

x = _ = 0

(1)
To work out this task we first write qj

the form

(A.1)

given by (82) and (80) in

q_l) = (AoX O + ALXL)exp i(k2Y + k3z)

(1)
q2

i
2 [(k3Bo + ik2klAo)Xo - <k2ALXL]exp i(k2Y + k3z)

<

i
2 [ (-k2Bo + ik3klAo) Xo - <k3ALXL]exp i(k2Y + k3z)

<

with

X O(x) : exp(iklX)

X L(x) = exp(-Kx)

where we have employed Eqs. (81), (68), (72) through (75).

(A.2)

(A.3)

With these

formulae expression (83) with (85) for frequency-analyzed velocity

correlation tensor is

(i) (x) q (x) <d<dB
[Rj , _] u) qj c

(A.4)

where we have suppressed superscript (l,1) in Eq.

by

k 2 = < cos B

(83) and B is defined

(A.5)
k 3 = K sin B

We introduce a cylindrical coordinate system in the fluid-dynamic space;

y - y = r cos O
(A.6)

Yz - z = r sin 8
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Since we may assume constants AO, AL, and BO not to depend on 0 because
of cylindrical isotropy of the phenomena, integration with respect to

variable B - e in (A.4) is seen to be practicable: To carry out the

integration we make use of the following formulae;

2_

Ilk21 rcos 1
k3 exp [i<r cos (8 - 8)]d(8-@) = 2_i<[sin Jl(Kr)

0

llk J
0

exp [i<r cos (8-8) ]d(B-@)

= n<2[J0(<r) _ cos 28 J2(<r)]

2_

I k2k 3 exp[i<r cos (@-_)]d(B-0) = -_k 2 sin 2@ J2(<r)

0

(A.7)

where J's are the Bessel functions and r has been defined by (84). In

obtaining these formulae we have made use of Hansen's integral representa-

tion for Bessel's function,

I ix cos@
(x) - 1 e cos n0 d0

Jn .n

_l 0

Assume that we have a set of measured data for six (independent)

tensor components [Rj£]_ at x = x = 0 and @ = 0. These measured data

given as functions of r are shown to be necessary and sufficient for

unique determination of the complex amplitudes in the following way:

Substituting (A.2) into (A.4) with integral formulae (A.7) into account,

we have the following expressions:
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co

Rll= [iAo+ALlIAO+ J01 rl d 
J

0

co

R22 _ = Ir I K-Id<{BoBo[J0(Kr) + J2(<r) ] + klkl*AoA_[J0(Kr)

0

- J2(<r)] + iKk*Al L oA*[J0(Kr) - J2 (_r)] - iKklAoAL[J0 (<r)

- J2(_r) ] + K2ALAL[J0(Kr) - J2(Kr)] },

oo

RI2 _ = -2_ I

0

RI3 _ = -2_ i

0

* * + KAy)d< Jl(Kr)(A 0 + A L) (ZklA 0

dK Jl(<r)(A O + A L) B 0 ,

oo

R33 _ = _ [ <-id<{BoBo[J0(<r) - J2(<r) ] + kl 10ok*A A*[J0(<r)+ J2(<r)]

0

iK(klALAo* * - klA*Ao)L [J0(Kr) + J2(Kr)] + K2ALA*[Jo(Kr )+

+ J2 (<r) ] } ,

co

R23 _ =-7 I K-IdK{Bo(41"*A* + KAy) + *(-iklA O + <AL) } J2(Kr)±_"10 BO "

0

_(A.8)

On the right-hand side of these expressions, the real part should be

taken because of the reason mentioned in Section II. If we are reminded

of the fact that Rile is the only functions of r, also that the variable
J

r appears only through the Bessel functions on the right-hand side, we

see that these equations can be inverted through the formula

co

I Jn-i (ar) Jn (br) dr =

0

f n-I
a

b n

1

2b '

• (for b > a > 0)

(for a = b)

0 (for a > b > 0)

(A.9)
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In fact, multiplying the first equation of (A.8) with Jl(br) integrating
with respect to r, and applying (A.9) we have

co

(Ao + A L) (A_ _• A_) = _i I Rll_rJ0 (<r) dr

0

In a similar way the following equations are obtained:

(A.10)

-I * * <A_) =< (A O + AL) (iklA 0 + 1 i (<r) dr2_ Rl2_rJl
(A. ii)

co

l  A.12 -< (A O + AL) B O 2_rJl

0

* * - B* IALBo ÷ BOA[)--i(BoklA O klA O O ) + <

oo

i 2f2< (Kr) dr + K
R23wJl -_- R23 rJ0(<r)dr

0 0
oo

, 1 I (R22 [-2<Jl(<r) + <2rJ0 (<r) ]drBoB O - 4_ _-R33_)

0
oo

+ _ (R22co+R33 w) rJ0 (<r) dr

0

(A.13)

(A.14)

(-iklA O + <A L) (iklA O + <A L)

co

- 4n (R22w-R33) [2<Jl(<r) - <2rJ0(<r) ]dr

0

co

+ _ (R22co+R33co) rJ0 (<r) dr

0

(A. 15)

where, as before, the real part should be taken on the left hand side.

We are, thus, led to six relationships (A.10) through (A.15) for unique

determination of the complex quantities A O, A L, and B O depending on two

parameters _ and < and in terms of experimental values of Rjl w given as

a function of r.
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APPENDIXB

A NEWASYMPTOTICMETHODOF SOLVINGORR-SOMMERFELDEQUATION

This appendix is mainly concerned with obtaining four independent
solutions % (i:i,2,3,4) for Y;I

y = CI@ 1 + C2@ 2

obeying Eq. (i07), namely,

+ C3¢ 3 + C4¢ 4 (B.I)

- i(u - c)Y + iuY : iC (B.2)
1

For the procedure of deriving this equation from the full-term Orr-

Sommerfeld equation, see the main text (Section V.B). In numbering the

four independent solutions, we have followed the conventional usage, for

example that employed in reference 21, so that each counterpart have the

same asymptotic behavior; ¢i and @2 tend to slowly varying functions,

whereas @3 and @4 exhibit exponential decay and growth, respectively.

Our procedure of obtaining the solutions will be carried out in the

order of @3 + @2 ÷ @4 ÷ @i in such a form that each solution will be

worked out using knowledge of @'s at previous stages, and @4 and $i will

be solved analytically in terms of ¢3 and $2"

Solution @3

First we will consider homogeneous equation (C 1 = 0) of (B.2) which

provides with solutions <i)2 through %4;

% - i(u - c)Y + i&v : 0 (S.3)

This equation has a structure such that the critical layer (u : c) is an

ordinary point, so that no artifice as needed in the classical treatment

is necessary in integrating the equation across the point. In view of

this feature, also of the prospective exponential decay, the solution ¢
3

may be assumed in the form

n
t

$3 = exp J I dR (B.4)

0

Then Eq. (B.3), subject to this transformation of the dependent variable,

reads
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Jr, alternatively and more conveniently,

= U - i(u - C),

= - 31 U + 4i(u - c)l - i
(B.5)

Since we are seeking a solution of (B.5) which decays exponentially in

the asymptotic limit (I, _ 0), the root for I with negative real part;

_l 1/2
i ~ - e (u - c)

(for _ >> I) (B.6)

U ~ i(u - c)

is seen to meet the purpose. In solving Eq. (B.5) for I and _ with

asymptotic conditions (B.6) it is advisable to introduce a variable-

transformation

V = -_ + 2i(u-c) - 12 _ (B.7)

JW = -2U + 3i(u-c) - 12

and to work with the equations in the new dependent variables (V,W),

+ I V - 2iu = 0

J+ 21 W - 3i6 = 0

(B.8)

subject to asymptotic conditions

V,W ~ 0, as D ÷ _ (B.9)

The actual integration may be started at a point n = 4( >> i) where

initial values

V = 2i_/I
(B.10)/W = 3iu/21

with I given by (B.6) are moderately small. The quadrature marches

inward from this point on with nonlinearity of Eq. (B.8) appearing in the

form

1 = -e (u-c + 2iV - iW) I/2
(B.II)

taken into account for D < _.
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It should be remarked here that this method of numerical integration
of original equation (B.5) works successfully only for the decaying
solution ¢3' and that a formally identical procedure for the growing
solution _4 suffers from drastic numerical instabilities. The difference
has its origin in the fact that the point _I = _ is a saddle singularity

of Eq. (B.5) for the case treated, whereas in the ¢4 case it proves to be

a nodal singularity from which an infinite number of solutions emerge.

It can be demonstrated that our solution (B.4) has the same asymp-

totic form as its classical equivalent for _ _ _ >> i. In fact, a

straightforward calculation from (B.4), (B.II) and (B.10) leads to

A

¢3(n) = ¢3(D) _/_ exp
e _l 1/2(u-c) d

A

(for n > n >> i)

(B.12)

On the other hand, the classical counterpart of ¢3 is given by (ref. 20)

T

_ )_3 I I i/2 (i) _ (iaoT)3/2Iz(_ = dT dT T HI/3

CI. _

(B.13)

.(i)
where nl/3 denotes Hankel function of the first kind, and T and a °

defined by

T = (y - yc) (_R) I/3

a O = (u_) 1/3

with subscript c signifying the value at the critical layer.

(B.13) takes the form

For T >> i,

2 ao 13J3([ ~ T -5/4 exp e
CI.

(B.14)

in qualitative agreement with (B.12).
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Solution _2

Once we have obtained one of the solutions of the third order

equation (B.2) difficulties are considerably lessened as to solving for

the rest of them because of the following theorem: If n independent

solutions of a m-th order linear differential equation are at hand, the

(n + l)-th solution is obtained through solving an equation of (m-n)th

order. This theorem applied to the current case for the second solution

¢2 warrants an equation of the order 3 - 1 = 2 to be obtained by putting

n

_2 = _3 I G dn

0

and by substituting into Eq. (B.2). This, in turn, is equivalent to

claiming that if G is assumed in the form

n

G = exp I (-I
+ S)dn

0

(B. 15)

(B.16)

the transformed variable S obeys a first order (nonlinear) equation. A

simple calculation actually confirms the assertion, leaving with a Riccati

equation

+ S 2 + I S - W = 0 (B.17)

where I and W have been solved from (B.8) and (B.II), respectively. Of

the two asymptotic roots of (B.17) for S ~ 0, the one that vanishes as

+ _, namely

S = W/I (B. 18)

turns out to be the correct choice. For this root alone gives rise to

the solution _2 meeting the requirement of slow variation as _ + _. In

fact, then

_2 = _3 I dn exp (- I + S)dn

0

^

= B 2 (u-c) ,
(for _ > _ >> i)

(B.19)
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with

^

n

3J2exp[/sd ]
0

where use is made of the fact that the integrand in (B.19) is a

rapidly growing function, so that only the portion in the vicinity of

the upper bound contributes to the integral, then the integral may be

replaced with

(-i + S)-I x exp [r_ (_i + S)dn]

0

it seems to be interesting to compare _2 with its classical counter-

parts

_2 C1. , in

[ ] : (u-c) + O(A2) J
_2 CI. ,out

representing inner (viscous) and outer (inviscid) solutions due to

Heisenberg (ref. 20), respectively. We note that the classical ¢2 is

uniformly slowly varying, whereas _2 as given here is moderately varying

for q _ O(I) (so is rapidly varying as a function of the physical

coordinate y = E_), and tends only asymptotically (_ >> i) to a slowly

varying function (B.19). Also to be noted is the coincidence of (B.19)

with the leading term of the classical outer solution, proving the sound

basis of the asymptotic scheme adopted here.

(B.20)

Solution ¢4

Repeated use of the foregoing theorem assures that the third

solution ¢4 satisfies a first order linear differential equation to be

deduced from (B.2). This assertion can be materialized by means of the

method of variation of constants;

¢4 = F2¢2 + F3¢3
(B.21)
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where ¢2 and ¢3 are functions of _ to be determined. Having eliminated
_2 between original equation (A.2) and the supplementary condition

_2_2 + _3_3 : 0

standard of this method, we are led to an equation for ¢

essentially of the first order;

_3 42 _2_3 - _3_2
- 2

_3 _2 ,243 - ,2_3

that is
3

This equation is analytically integrated to give

n

¢4 = -_2 I _3W-2 dn + ¢3 I ¢2W-2

0 0

where W is the Wronskian formed by _2 and _3

dn (B.22)

_P ----- (B.23)

It is easily confirmed from analytical solution (A.22) for _4 that

it has an asymptotic form of exponential growth with n. In fact, using

the same approximation as has been utilized in deriving (B.19) we have

for (A.22),

with

_4
1 1

2 1302_3

IT.

~ B4(u-c)-5/4expEe41 I (u-c)i/2d_
(B.24)

A

B4 1 e 1

- 2 _253 ([_c)5/4

where, in deriving the second row, asymptotic expressions (B.12) and

(B.19) for ¢2 and _3 have been used. Relationship (A.24) is again in

qualitative agreement with its classical equivalent as it is in the case

of decaying solution _3" The classical equivalent is (ref. 21)
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T T

--co --co

1/2 (2 3/2_HI/_ I_3 (iao_) (B.25)

with the same nomenclatures as before and with the Hankel function of

the second kind rill3."(2) The asymptotic expression of (A.25) for T >> 1 is

3j4(_ _ T -5/4 exp _ (aoT)
CI.

(B.26)

in qualitative agreement with (B.24).

The set of solutions (_2,_3,¢4) thus constructed has noteworthy

characteristics for the Wronskian that serves to simplify the analyses

to follow;

Will

_2 #3 ¢4

%2

= 1 (B.27)

This formula is easily checked by noting the following relationship

dB1 - dB1 0 _ dn + d-n--_-- 0 _ d_ + W

holding for l; 0, i, 2.

Solution ¢i

Since all the homogeneous solutions have been exhausted the fourth

solution #I of Eq. (B.2) needs to be sought from particular solutions of

the equation with C 1 = i;

_'i - i(u-c)_l + iu¢ 1 = i (B.28)

The method of variation of constants provides a workable tool also here,

since we have all the homogeneous solutions 02 through ¢4 at hand.

According to the theorem cited no differential equation need to be solved,

and a manipulation using key property (A.27) leads to the following from

of the solution;
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with

¢i = i¢2 I

n n

W 13 dn - i_ 3 I W 12 dn + i¢ 4 ] W d_ (B.29)

co

dR (I;2, 3) (B. 30)

where _ = 6 >> 1 is a point beyond which the asymptotic expressions for

¢2 through ¢4 are valid. Taking derivatives successively we have,

d/_l d/¢2 i d/¢3 i= - W 12 dn
i d-_-- W I3 d_ i 1

^ d_ 0

d/¢4

W dn + i,_
3£

(£ = 1,2,3) (B. 31)

a relationship easily checked using (A.26), (A.20) and (A.21).

The function ¢i in form of (A.29) is shown to tend to a slowly

varying function for _ >> 1 under the same conditions as invoked in

deriving asymptotic expression (B.19) for _2; the resulting expression

is

¢i ~ - (u-c)

n

S (U-C) -2dN

^

(n > n >> I) (B.32)

For comparison the classical equivalent of this function is noticed;

(¢i) = % + O(eR) -I/3
Cl,in

Y

(_l)Cl,out = (u-c) I (u-c)-2dy + O(A2)

(B. 33)
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where 7 has been defined in (B.13). Coincidence of leading terms of our
asymptotic expression with classical outer solution is observed also here.

In view of (A.31) we can easily show the following relationship to

hold regarding the Wronskian formed by the four solutions ¢i through ¢4

WIV =

¢i ¢2 ¢3 ¢4

%1 ¢2 _3 _4

_I ¢2 ¢3 _4

¢4

= -iWii I = - i
(B.34)

Higher Order Approximation

As described in the main text the full solution of the Orr-So_erfeld

equation is constructed through a successive approximation starting with

Eq. (B.2) whose solutions are now at hand. In practice, the n-th order

correction ¢(n)
is obtained by solving inhomogeneous equations (112),

i

following the same procedure as has led Eq. (B.28) to solution (B.29).

We have, then,

fn (n) fn (n)¢(n) : ¢ WI3J dn- ¢ WY2J d_
I 2 _ l 3 0

R

f (n)+ ¢4 WJI
oo

dn (B. 35)

with

[R r _ (n-2) (B.36)(n) H 25 (n-l) -- i (u-c)¢(n-l)d_- ¢ dn

Utilizing, in these formula, the same approximation as employed in

deriving asymptotic expressions for ¢i and ¢2' we get

0,n Cucf nl- (U-C)¢ dR. (R > _ >> i) (B.37)

l (u_c) 2 _ 1
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(0) = _ (l;l 2)his expression, being substituted into (115) with _I 1 '
_iven by (B.32) and (B.19), respectively, is readily seen to have exact
zoincidence with Heisenberg's outer (inviscid) solutions (ref. 20). The

series solutions for F1 and F2 are provied to be uniformly convergent if

the lower bound y(= £_) is taken such that u-c varies only slowly for

< y. In fact, then, the series sum up to yield

F 1 - -(u-c) sinh A(y-y)

F 2 ~ (u-c) cosh A(y- 9)

(B.38)

(B.39)

Asymptotic Boundary Condition

It is advisable from convergence relief point of view to replace the

boundary condition of type (102) at a far boundary (Y = Y) by an equiv-

alent asymptotic one;

AY + Y' = 0 (B.40)

This is permissible if, at y = _ properly chosen,

A2 I u" -1> _/_ > O(_R) (B. 41)

a condition accessible to most of the laminar flows and the wall-turbulent

flow discussed in the main text. Imposing (B.40) instead of (102) enables

us to choose a smaller value for 9 in favor of convergence in the

successive approximation.

Comparison with Existing Stability Calculations

Although the method described here is designed primarily for wall-

turbulent flows, we have invoked no assumptions to rule out its applica-

bility to the classical (laminar) solutions. In fact, the classical case

is simply a limiting case (_ ÷ 0) in Eq. (106) of the present formalism.

The whole set of laminar solutions forms, in this sense, a subset of

solutions achieved by the present method. Reproduction, therefore, of

some of the classical stability characteristics will serve for checkout

of the program.

Figure A1 shows the neutral stability curve for Blasius' flow, where

the comparison is made with those by Lin (ref. 21) and Wazzan et al.

55



(ref. 29) obtained through the classical asymptotic method and purely
numerical one, respectively. The classical asymptotic method is subject
to inaccuracy of O(c_R)-/3, whereas the present calculation includes error
of O(_4) which is caused by truncating successive approximation at 2
These limitations are reflected on the behavior of each curve deviating
from the computational one with a decrease of R and an increase of _,
respectively. Agreement, however is considerably improved in the present
case. Experimental data due to Schubauer and Skramstad (ref. 20) are
also shown for comparison. Their seeming agreement with Lin's curve at
lower Reynolds numbers is due to a fortuitous reason: Good agreement Js
not to be expected for lower Reynolds numbers where the stability curve
becomes sensitive to factors arising from nonparallel streamlines of the
Blasius flow. It is properly corrected by Saric et al. incorporating
these elements (ref. 31). A more precise comparison amongthe three
methods are seen in Figure A2, where calculated longitudinal fluctuation
]Y' I is shown together with those by classical asymptotic method due to
Schlichting (ref. 32) and by the computational method (ref. 29), also
with the experiment {ref. 30). Prediction by the present method is seen
to have the best correlation with the measurement in the case tested.

Euler's Transformation for Improved Convergence

Our main objective of computing the wall-turbulence stability charac-

teristics faces a difficulty not encountered in the laminar case; the

problem of convergence in successive approximation (109). It appears

that the lower bound i_ of the integral in (B.36) was not chosen so as to

secure uniform convergence. Since, however, the actual computation has

shown that expansion (109) proves to be a (complex) alternating series,

one can apply Euler's transformation to speed up convergence. The trans-

formation is well known as a means of finding the sum _ a of an
n=0 n

alternating series which is not absolutely convergent, a tool invented

by Euler (1755) and applied in its full length to problems of the bound-

ary layer by Meksyn (ref. 33). Operation of the transformation converts

the sum to

a = [ bn/2 (n+l)
n=O n n= 0

with
n

= _ n!
bn r' (n-r) ' a

r=O " . r
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securing much faster convergence owing to alternating structure of {ar}.
The method applied to sum an asymptotic series is utilized here: First
we find a having the minimum absolute valuem

a = min.{a }
m n

If m = i, the Euler transformation is applied to the whole series. If

m > i, we apply the transformation only to the partial sum; {a } with
n

n A m + i. l_epeated use of relevant alternatives at each stage is con-

tinued for a given finite sum of N = i0 terms until IbN/_ bnl settles

down within a prescribed error bound.
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Figure A2. The Longitudinal Fluctuation, or the First Derivative of the

Eigenfunction Y' Computed or Measured at (R = 2080, _ = .307) on the

Upper Branch of the Blasius Stability Curve: Comparison of the

Classical Asymptotic Method (Schlichting, ref. 32), the

Numerical Method (Wazzan et al., ref. 29) and the

Present Method with Experiment due to

Schubauer and Skramstad (ref. 30).
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